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Introduction
Smoothing unstructured grids is a critical com-

ponent of many large-scale three-dimensional
simulations. Few of the existing mesh smooth-
ing techniques are capable of handling large un-
structured meshes in complex geometries. For
example, most smoothers generate unacceptable
or even invalid grids in the neighborhood of
extremely convex or concave boundaries. In
contrast, a smoothing technique based on har-
monic coordinates was developed in [1] that is
robust with respect to these geometric complex-
ities. This technique defines a system of three
quasi-linear diffusion equations, one for each co-
ordinate direction. The coupling between com-
ponents of this system is through the elements
of the metric tensor, which defines the solution-
dependent diffusion tensor. This grid smoothing
is driven by a target metric tensor that is based
on a coarse-graining (local averaging) of the cur-
rent mesh. We use a standard vertex based Finite
Element Method to discretize the variational for-
mulation of this quasi-linear system of equations.

Efficient Solvers
We have developed a Jacobian-Free Newton-

Krylov (JFNK) algorithm (cf. [2]) with a multi-
level preconditioner to solve this discrete nonlin-
ear system of equations. The JFNK approach rec-
ognizes that the underlying Krylov iteration (e.g.,
GMRES) does not require the Jacobian matrix it-
self, but simply the action of the Jacobian on a
vector. Since this action may be approximated
through two nonlinear function evaluations, it is
not necessary to compute the Jacobian. How-
ever, without effective preconditioning the perfor-
mance of this GMRES iteration will be unaccept-

Figure 1: An object with a re-entrant crease
(top) is meshed initially with transfinite inter-
polation. Many elliptic smoothing techniques
(e.g., Winslow) fold the mesh along the re-entrant
crease. The target metric approach provides a
well balanced distribution of cell volumes and
angles near this line (bottom). Similar improve-
ments are observed for common awkward inter-
nal structures, such as triple-points.

able for large meshes. In particular, to achieve op-
timal algorithmic scaling we must leverage mul-
tilevel solution techniques in the preconditioner,
and these techniques require a matrix.

Thus, the fundamental challenge is to develop
a preconditioner that is inexpensive to form, ef-
fective in its approximation of the Jacobian, and
amenable to multilevel solvers. To motivate the
preconditioners that we investigated, we note that
the Jacobian may be written as the sum of a sym-
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metric block diagonal operator D (the Picard lin-
earization) and a nonsymmetric operator N with
no derivative terms, J = D +N .

The properties of J differ significantly from
the underlying assumptions and supporting the-
ory found in the most widely used class of mul-
tilevel iterative solvers, namely, algebraic multi-
grid (AMG). Nevertheless, AMG can be used to
solve these systems, and although its performance
is somewhat less predictable and its algorithmic
scaling is suboptimal, it is significantly more ef-
ficient than a single level preconditioner. Hence,
our first JFNK algorithm forms the full Jacobian
only once for the initial mesh, and then reuses it
throughout the nonlinear iteration. This frozen Ja-
cobian preconditioner is treated with AMG.

However, to deliver the most efficient solver
possible we must eliminate the evaluation of the
Jacobian entirely. and replace it with an accu-
rate and inexpensive approximation. Our second
JFNK algorithm is ideal from this perspective as
the preconditioner is the symmetric block diago-
nal Picard linearization, D , which is composed of
three decoupled scalar diffusion problems.

Numerical Results
We illustrate the excellent performance of our

JFNK solvers [3] through a scaling study that em-
ploys a sequence of refined meshes based on the
object in Figure 1. The poor scaling and high
computational cost of the original solver is shown
in Figure 2. In contrast, our JFNK algorithm with
GMRES preconditioned by AMG-V-cycles con-
verged to a relative residual of 0.01 on the frozen
Jacobian, decreases the computation time by ap-
proximately a factor of five for the largest mesh in
this study, although it scales poorly. Finally, using
the Picard linearization, D , as the preconditioner
eliminates the need for any Jacobian evaluations.
Our JFNK implementation with GMRES precon-
ditioned by AMG-V-cycles converged to a rela-
tive residual of 0.01 on D , achieves an impressive
20 times speedup over the original algorithm, for
the largest mesh in this study, and the best algo-
rithmic scaling.
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Figure 2: A scaling study based on three succes-
sively finer meshes of the object in Figure 1, illus-
trates the gain in performance resulting from the
new Jacobian-Free Newton-Krylov (JFNK) solver
with advanced multilevel preconditioners. For the
largest mesh, JFNK preconditioned with AMG V-
cycles on the Picard linearization (converged to a
relative residual of 0.01) is nearly 20 times faster
than the original NK solver that used a block ILU
preconditioner.
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